Binary
Heap

CS 251 - Data Structures and
Algorithms

| Note:
Slides complement the
discussion in class

O

@) O

Binary Heap Table of Contents
Queue with priority

01

|||||||||||||||||

Think About This

We insert multiple random items into a
data structure without following a
specific order. We need to find the min
or max item. How do we do it?

Sorting and then get min/max?
O(nlog(n)) + 0(1) € 0O(nlog(n))

Ordered insertion then get min/max?
O(n)+0(1) € 0(n)

Binary Heap

A binary tree-based data structure
° such that:

e Q The binary tree is complete.
* |tis heap-ordered:
* Min-heap order: The parent's item
Q G e G is less than the children’s items.
» Max-heap order: The parent’s item

a 0 is greater than the children’s
items.

Note: Items must be comparable to answer questions of the form: is A < B?

"Algorithm 232 - Heapsort", J.
W. J. Williams, ""Communications
of the ACM“, 1964

https://dl.acm.org/doi/10.1145/512274.512284

ALGORITHM 230

MATRIX PERMUTATION

J. Booruroyp (Reed 18 Nov. 1063)

English Electric-Leo Computers, Kidsgrove, Stoke-on-
England

procedure wnatrizpern (b s dnp); value n; real ab;
integer array 5,d; Integer j,kn,p;

comment & progedure using Jensen’s devioe which exchanges
rows or columns of a matrix to achieve reurrangement specified
by the permutation veetors s,d(1:n]. Elements of & speeify the
original souree loeations while elements of d specify the desired
destination locations, Normally o and b will be called as sub-
seripted variables of the same array. The parameters j,& nom-
inate the subseripts of the dimension affected by the permuta-
tion, p is the Jensen parameter. As an example of the use of this
procedure, suppose r,oflin] to eontain the row and eolumn sub-
seripts of the successive mabrix pivots used in & matrix inver-
sion of am array afln,lml; ie. rill, ell] are the relative sub-
seripts of the first pivat 7[2], «{2] those of the second pivot and
50 on. The twa ealls

mairizperm (alj,pl, alk,pl, j,k:7,cn,p)
and matrizperm (alp,j), alp,kl, ik,e.0n,p)
will perform the required rearrangement of rows and eolumns
respectively;

begin integer array tag, loc{l:n]; integeri,l; roal w;

comment set up initial veetor tag number and address arrays;
fori := 1ste n do tagli] == locfi] = i;

comment start permutation;
for i := 1 step L until i do

begin £ 1= olil; j = loclty k= dfil;
if j#k then begin for p := 1step I until n do

end i loop
end matrizpern

ALGORITHM 231

MATRIX INVERSION

J. Booraroyp (Reed 18 Nov. 1963)

English Electric-Leo Computers, Kidsgrove, Stoke-on-
Trent, England

procedure matrizinort (a,n,eps,singular); value neps; are
ray a; integern; real eps; label singular;

comment inverts a matrix in its own space using the Gauss-
Jordan method with complete matrix pivoting. Le., at oach
stage the pivot has the largest absolute value of any element in
the remaining matrix. The coordinates of the auocessive matrix
pivots used at each stage of the reduction are recorded in the
successive element positions of the row and column index
vectors r and . These are later called upon by the provedure
niatrizperm which rearranges the rows and columns of the

Volume T/ Number 6 / June, 1964

G. E. FORSYTHE, Editor

matrix. If the matrix is singular the procedure exits Lo an appro-
priate label in the main program,
begin integer ik, pivi,piv,p; real pivol; integer array
rell s
comment set row and column mdcx veetors;
for i := 1 step L until n do
comment find initial pivat;
for i := 1 step 1 until n do for j ;= 1 step | until n do
if abs (u[iﬂ] > abs {apivi,pis]) then begin pivi := i;
pinj
comment start reduntlnn‘
for i := 1 step 1 until ndo
beginl i= rfil; rli] o= ripivil; ripiv] =
eli] = elpivjl; clpivgl] = 1;
ifeps > ubs (afrfil,cli]]) then
Dbegin comment hore include an appropriate output pro-
cedure to record i and the current values of rilim] and
cu.n); g0 1o singular end;
step —1 untili-+1,i—1step —1 until 1 do alrfi],e[f])
= ﬂ[ff‘hfb]]/ulr[cl clill; alriileli]] == 1alrlil,elill;
pivol

o= il

for & lubepl until -1, i+1 step L until n do
begln for j := nstep —1 until i+1,i—1 step —1 until1 do
begin afrlk] vaIJ o= alrlk)eljll ~ alrli],eli)] X alrlklefl];
i k>i A joi A abs (..[rl):l sl.a]l) > abs(pivol) then
begin pivi i= k; pinj
pivod = alr]l nd conditionsl
end slaop;
alrlklefil] := —alrlél,clé]] X afrlk]cli]]
end Koo
end iloop and reduction;
comment rearrange rows; matrizpern (alj,plalk,plik,re,np);
comment rearrango columna;
matrizperm (alp.jl.alpkLikcrn.p)
end matrizinvert

[Epiton’s Note. On many compilers matrizinvert would run much
faster if the subseripted variables 1], clil, r[k] were replaced by
simple integer variables ri, ci, 7k, respeatively, inside the j loop.—
G.EF.]

ALGORITHM 232

HEAPSORT

J. W, J. Wiepiams (Reed 1 Oct. 1963 and revised, 15
Teb. 1964)

Elliott. Bros. (London) Lid., Borchamwood, Herts, Eng-
land

comment ‘Tha following procedures are related to TREESORT
iR. W. Floyd, Alg. 113, Comm. ACM 5 (Aug. 1962), 434, and
A. F. Kaupe, Jr., Alg. 143 and 144, Comm. ACM & (Dee. 1062),
604] but avoid the use of pointers and so pressrve storage space.
All the procedures operate on single ‘word items, stored as
elements 1 10 n of the array A. The elements are normally so
arranged that Ali]S ALl for 2575 n, 1=7+2. Such an nrrange-

Communications of the ACM 7

https://dl.acm.org/doi/10.1145/512274.512284

Binary Heap

What did we say about balanced
binary trees? Many things that
lead to:

h € B(log,(n))

So, every complete binary tree is
balanced!

/©\@ Binary Heap

Max-heap (aka Max Priority Queue) if
° the key in each node is larger than or

equal to the keys in that node’s two

e G children (if any).

Min-heap (aka Min Priority Queue) if

Q G e G the key in each node is less than or

equal to the keys in that node’s two

a 0 children (if any).

®

O,

Min-Heap

Max-Heap

10

Binary Heap ADT

e insert(item): Inserts the item in the heap
and moves it into its right place.

e [del, get][min, max](): Removes and
returns the next item in the heap.

e isempty(): Checks whether the heap is
empty or not.

e size(): Returns the number of items in the
heap.

e peek(): Returns the next item in the heap
without removing it.

[J
. o@
Insertion on Binary Heaps
Insert each item in the next available location in a heap, then swim up the item until it @
reaches its proper place according to the heap order.
® Each insertionis 0(log,(n)) @
Why? It traverses a single path of a complete binary tree
®
12

Insert into a Min-Heap: 23, 10, 17, 28, 34, 89, 22,9

Insert 23:

Insert 10:

® (%)
5

®

-

Insert 17: @

Insert 28:

13

O,

Insert 34:

Insert 89: Insert 22:

14

Delete/Get Min/Max

Put aside the item at the top of the heap. Move the last item in the heap to the top, @
then sink down the item until it reaches its proper place according to the heap order.
Finally, return the previous top value.

Each deletion is O (log,(n))
Why? It traverses a single path of a complete binary tree

é getMin(): @

O s ()
ookl olo
N OIOI0IONOI0I010N 0102020
@ Return 9

17

Examples of Priority Queues

1. Emergency clinics process patients with different emergency levels. Some
patients require immediate attention, while others may wait a bit longer.

2. You are in line for the next cashier to pay for groceries. Someone with fewer
items than you is behind you in line. You, out of the goodness of your heart, tell
the person to go ahead of you in line.

3. Operating systems have process priority scheduling. Priorities based on

technical quantities (memory usage, I/0 operations, sleeping time), politics, or
user preference.

18

How Do W

Implement A
Binary Heap?

/©\@ Array Implementation

e c 1 2 3 4 5 6 7 8

BHl Al lc|Do|E|F|G|H]|I

e e leftchild(i € Zs) :=2i + 1
° G G e rightchild(i € Zsg) := 2i + 2

i—1
parent(i € Z%) := l J

2

For implementation purposes, you must handle parent(0) as a corner case.

Insertion in a
Min-Heap

algorithm insert(A:array, X:item)

let 1 be A’s next available index
A[i] « X
p « parent(i)

while i > @ and A[i] < A[p] do
swap(A, i, p)
iep
p « parent(p)

end while

end algorithm

21

Insert into a Min-Heap: 23, 10, 17, 28, 34, 89, 22,9

Insert 23:

23

Insert 1

0:

374

o 1 2 3 4 5 6
25110
o 1 2 3 4 5 6

10

23

O

22

Insert 17:
0 1 2
100123 17

Insert 28:
0 1 2 3
1012317 | 28

23

Insert 34:

10

23

28

34

Insert 89:

24

Insert 22:

o 1 2 3 4 &5 6 7

10

235

17

28 | 34

89

22

25

Insert 9:

34

89

22

10

17

235

34

89

22

28

26

GetMin

Think carefully about minchild(A:array, i:Z) — ?. What value should it return if the left child of i does not exist?

algorithm getmin(A:array) - item
throw an exception if A is empty
t « A[9]
let n be size of A
A[@] « A[n-1]
n « n-1
i<o
min < minchild(A, i)
while min < n and A[i] > A[min] do
swap(A, i, min)
i « min
min « minchild(A, i)
end while
return t
end algorithm

27

Keep In Mind

Swim Up and Sink Down (AKA. Sift Up and Sift Down)
functions are almost the same for Min-Heaps and Max-Heaps.
The difference is the comparison signs to preserve the
respective heap order.

Due to their fast runtime complexity O (log,(n)) for both
insertion and deletion, Min/Max binary heaps are used as a
fundamental data structure for more sophisticated data
structures and algorithms.

28

Done!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

29

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Binary Heap
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Binary Heap
	Slide 5: Think About This
	Slide 6: Binary Heap
	Slide 7: "Algorithm 232 - Heapsort“, J. W. J. Williams, "Communications of the ACM“, 1964
	Slide 8: Binary Heap
	Slide 9: Binary Heap
	Slide 10
	Slide 11: Binary Heap ADT
	Slide 12: Insertion on Binary Heaps
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Delete/Get Min/Max
	Slide 17
	Slide 18: Examples of Priority Queues
	Slide 19: How Do We Implement A Binary Heap?
	Slide 20: Array Implementation
	Slide 21: Insertion in a Min-Heap
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: GetMin
	Slide 28: Keep In Mind
	Slide 29: Done!

